
August 10, 2008 / Vol. 6, No. 8 / CHINESE OPTICS LETTERS 597

A method of measuring the refractive index of

extraordinary ray in uniaxial crystal with optic axis at

an arbitrary orientation

Yongxing Jin (777[[[,,,) and Zhongxing Shao (


¥¥¥,,,)

Institute of Opto-Electronics, China Jiliang University, Hangzhou 310018

Received January 2, 2008

A new equation to measure the refractive index of extraordinary ray in uniaxial crystal with the optic axis at
an arbitrary orientation has been given in this letter, and the term in this equation makes the measurements
to be relatively easy. The theoretical study shows that the accuracy achieved in the experiments attains
to the order of magnitude in 10−3.
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Nonlinear optical techniques have been playing an impor-
tant role in modern optics, especially in extending laser
frequency bands. In recent years, nonlinear optical ma-
terials are rapidly developed. However, people have long
been puzzled by how to practically define refractive in-
dex of the extraordinary (e-) ray of crystals with optic
axis at an arbitrary orientation. Knowing the index is
the key in making crystals be nonlinear optical devices.
For instance, phase matching techniques used in nonlin-
ear optical devices are just to make the index of the e-ray
equal the ordinary (o-) ray for arranging the optical axis
at certain orientation[1].

Theoretically, the indices of the e-ray, as the axis at ar-
bitrary orientation in crystals, can be calculated by the
index ellipsoid[2]:
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where β indicates the angle of the e-ray subtended to
the optical axis, no and ne are the principal indices
for the o-ray and the e-ray, respectively. In fact, β
has only theoretical meaning but is not measurable, al-
though we have created a group of equations to help the
measurement[3−5]. For the time being, as we know, the
indices of the e-ray have not been measured yet except
the special case of the axis parallel to the surface of the
crystals.

Presuming a beam is normally incident on the crystal
with optic axis at arbitrary orientation, the birefringence
occurs inside the crystal. Generally the e-ray passes a
different way and deviates a small angle from the o-ray,
except the special cases of the axis parallel or vertical
to the surface. The optical path and the phase of the
e-ray are different from the o-ray while they arrive at
the emerging surface of the crystal. In negative crystals,
such as YVO4, the e-ray will have a higher speed (same
frequency) and a longer wavelength. We can write the
equation regarding the phase difference
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λ
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where d is the thickness of the crystal, α indicates the

walk-off angle of the e-ray from the o-ray, λ denotes the
incident wavelength. If β = π/2, the optical path of the
e-ray is the same with the o-ray, the index of the e-ray
ne(β) is equal to the principal index ne, and then Eq. (2)
simplifies to the well known formula δ = 2πd

λ
(no − ne).

From Eq. (2), consequently, we have the index of the
e-ray at normal incidence:

ne(β) =

[
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δλ

2πd

]

cosα. (3)

Evidently, the terms in the right hand of Eq. (3) are ex-
perimentally measurable. no and λ are easily known. d
can be measured in the order of magnitude of microme-
ter. α can be given by measuring the separation of the
birefringence on the emerging surface. So as to the key
factor δ, how to define its absolute value is tedious and
hard work. To get the absolute value, we suggest to per-
turb the paths of the birefringence to create a new phase
difference δ′. If the perturbation is so suitable that the
error of ne(β) and α, caused by the perturbation, are neg-
ligible, then we can get a group of new data pertaining to
δ′. With the help of the new data we use the difference of
δ − δ′, instead of the absolute values of δ to solve ne(β).
To realize this idea, the perturbation of the paths has
been done by tilting the crystal just a very little to the
normal incidence.

If slightly tilting the crystal at a tiny angle i, which
equals the incidence, the phase difference becomes

δ′ =
2πd

λ

[
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cos r
−
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]

, (4)

where r indicates the refractive angle of the o-ray and is
given by sin r = sin i

no

. Which of the sign “±” before r

in Eq. (4) should be taken depends on orientation and
inclination of the crystal.

Finally, subtracting Eq. (2) from Eq. (4), we have
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where ∆δ = δ − δ′. Obviously, according to Eq. (5) we
no longer need to know the absolute δ. What we need
to do is to monitor the relative variation of ∆δ which is
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a function of the tilting angle. This makes the measure-
ments be relatively easy.

Here we will measure the index. In the apparatus
shown in Fig. 1, a He-Ne laser (λ = 632.8 nm) was inci-
dent on the crystal. The telephoto system TP consists of
two positive lenses with focal lengths of f1 = 4 mm and
f2 = 120 mm respectively, and it expands the double
refractions to compress the divergence to be less than
0.1 mrad, as well as makes the double refractions overlap
each other to form polarized interferential fringes. Actu-
ally, the interference is duality due to path difference and
polarization. There are two pieces of YVO4 whose sizes
are 10×10×15 (mm) and 10×10×10 (mm) respectively,
and the YVO4 crystals with optic axes oriented at π/4
and π/3 to the incident surface were tested respectively.
The rectangular crystal is convenient for determining
the azimuth of the optic axis. The measured YVO4 lay
on an adjustable deck which is precisely adjustable with
micrometers. The deck was inserted into a pair of polar-
izors, P and A, whose polarized axes are orthogonal and
at π/4 to the rims of the section of the crystal. P is for
polarizing the incidence and A acts as the analyzer. For
initial collimation the whole system was aimed at normal
incidence as strictly as possible to get the “zero order”
fringe. The fringes were monitored at a screen with grids.
For exactly locating and accounting the fringes flashed
on the screen as tilting the crystal, a photodiode was just
put barely at the margin of the fringe.

The thickness d should be enough to separate the bire-
fringence on the emerging surface in a measurable size
and to have a remarkable ∆δ. In this letter we make
d = 10 ± 0.001 mm.

Before measuring the index of the e-ray, we have to
determine the azimuth of the optic axis. For this, the
system was somewhat detuned in order to observe high
order fringes like a comb. Fixing the polarizors and ro-
tating YVO4, as a result, we observed that the row of the
fringes is always perpendicular to the separation between
the e-ray and the o-ray, which shows the azimuth of the
axis of the crystal.

There are two following situations in measuring the
index of the e-ray: at normal incidence and at oblique
incidence.

For the situation at normal incidence, as a prerequisite
of the experiments, we must measure the separation of
the double refractions on the emerging surface of the
crystal for further giving rise to the angle α of the e-
ray separated to the o-ray. In these measurements the
telephoto system TP was taken away, and a reading
microscope was directly aimed at the emerging surface.
The reading accuracy is in the order of magnitude of
micrometer.

Fig. 1. Apparatus for measuring the index of the e-ray.

For getting a large variation of the path difference, we
always install the crystal in such a way that the e-ray is
above or beneath the o-ray. Relocating the telephoto and
carefully collimating the system, we can observe the “zero
order” fringes. Then slightly rotating the deck to make
the crystal incline in the direction in consistence with
the separation of the birefringence by carefully twisting
the micrometer, at the same time we monitor the fringes
in dark and bright alternatively. The inclination corre-
sponds to deviation of the incidence from the normal.
The varied periods of the fringes indicate the difference
of ∆δ, and the corresponding rotated angle of the crystal
equals the incidence i.

For the situation at oblique incidence[6,7], the spatial
relations between the rays, the normal and the optic axis
are more dazzling than those of normal incidence. It
leads to complicated calculations.

Let the incidence incline to the crystal at θi and give
rise to the refractive angle θr in horizontal plane. Look-
ing into triangle ∆OEO′ shown in Fig. 2, we inferred the
path of the o-ray
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, (6)

and the path of the e-ray
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So the phase difference in this case
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Fig. 2. Paths of the two rays in birefringence in uniaxial crys-
tal. (a) At normal incidence; (b) at oblique incidence.



August 10, 2008 / Vol. 6, No. 8 / CHINESE OPTICS LETTERS 599

After the crystal is rotated at a tiny angle in direction
vertical to the incident plane, the paths are OE′ = OE

cos r

for the e-ray and OO′′ = OO′

cos r
for the o-ray. The phase

difference in this case

δ′ =
2πd

λ cos r
[noOO′ − ne(β)OE] . (9)

Expanding it, we have
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Then the difference
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Finally, the index of the e-ray

ne(β) =
no − ∆δλ cos θr cos r

2πd(cos r−1)
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and the angle of the e-ray subtended to the optic axis

cosβ =
2d2 + O′E2 − AE2

2
√

2d × O′E
, (13)

with

AE2 = AO′2 + EO′2 − 2AO′ × EO′ cos γ, (14)

AO′ = OO′ =
d

cos r
, (15)

γ = π − sin−1(cos r) − 6 EO′E′, (16)

where 6 EO′E′ can be measured in experiments.
According to Eq. (3), δ would be very sensitive to

d when d is thick enough. So as long as the crystal is

Table 1. Error Analysis of the Measured ne(β)

Factor Variation Error in ne(β)

∆δ ±0.1 ±3 × 10−3

d ±5 × 10−3 mm ±5 × 10−4

α ±0.1 mrad ±3 × 10−3

r ±1 mrad ±2 × 10−3

β ±1 mrad ±10−4

slightly tilted, δ goes to experience a number of periods.
Thus the main error comes from accurately locating the
fringes. For example as rising ∆δ = 10 to ∆δ = 10.1,
the measured index ne(β) would increase 3.0× 10−3 (see
Table 1 error analysis). We have ensured the location in
the measurements as precisely as less than a tenth of an
order.

The error of α affects ne(β) relatively weak. As ne(β)
varies from the minimum no = 1.9929 to the maximum
ne = 2.2514, β increases from 0 to π/2. Then β varies 1
mrad, ne(β) varies about 10−4 according to Eq. (1).

Above error analysis makes us reasonably believe that
the accuracy achieved attains to the order of magnitude
in 10−3.

In this letter we have given the new equation to mea-
sure the index of the e-ray in uniaxial crystal with the
axis at an arbitrary orientation. To assure the accuracy
of the measurements, one should pay attention to the fol-
lowing key techniques.

1) The parallelism of the optical surfaces of the crystal
should be less than 5′′, which assures error within λ/10.
And the crystal should be arranged at normal incidence.

2) The crystal should be thick enough to assure a large
separation of the birefringence on the emerging surface
of the crystal, then the deviation angle and the phase
difference could be accurately measured.

Y. Jin’s e-mail address is jinyongxing@cjlu.edu.cn.

References

1. W. Feng, H. Lin, and L. Chen, Acta Opt. Sin. (in Chi-
nese) 27, 1044 (2007).

2. A. Yariv, Quantum Electronics (in Chinese) S. Liu, C.
Wu, M. Wang (trans.) (Shanghai Scientific and Techni-
cal Press, Shanghai, 1982) p.93.

3. Z. Shao, Phys. Rev. E 51, 1043 (1995).

4. M. C. Simon and R. M. Echarri, Appl. Opt. 25, 1935
(1986).

5. Z. Shao and C. Yi, Appl. Opt. 33, 1209 (1994).

6. M. C. Simon, Appl. Opt. 22, 354 (1983).

7. W. Shen and Z. Shao, Acta Opt. Sin. (in Chinese) 22,
765 (2002).


